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1 Definition of SVF

Any vector-valued function from a subset Ω of RD on RD is called here vector field. For each x =
(x1, ..., xD) ∈ Ω a vector field v can be expressed in components as

v(x) = (v1(x), ..., vD(x) =
D∑
d=1

vd(x)ed =
D∑
d=1

vd(x)
d

dxd

∣∣∣
x
,

(where the last choice is preferable when we intend to underline the action over the set C∞(Ω) as
directional derivative, see for example [10], [14]). Each component vj is a function defined from Ω to
R and its features characterise the vector field: if each of them is differentiable (or smooth) then v is a
smooth vector field.
A diffeomorphism over an open compact subset Ω of RD is a continuous and invertible function from Ω
to itself that is also differentiable with differentiable inverse. The set of diffeomorphisms forms a group
with the operation of composition, indicated with Diff(Ω).
A one-parameter subgroup of diffeomorphisms of Ω, is a map

g : R× Ω −→ Ω

(t,x) 7−→ g(t,x) = gtx

that satisfies the following conditions:

1. g is differentiable for both of the variables.

2. gt : Ω→ Ω, called flow of Ω is a diffeomorphism for each t ∈ R.

3. The set {gt | t ∈ R} form a commutative group with the operation of composition inherited by the
action of the group (R,+) over Ω, and therefore satisfies gt ◦ gs = gt+s and g0 = Id.

The variable t is called time-parameter or simply time. Some one parameter subgroup may have a time
parameter defined only on a compact subset of R. To simplify the notation we will consider the general
case, since required restriction of the particular case are straightforward and not restrictive.

Given a one parameter subgroup g, it defines uniquely a diffeomorphism of Ω, when its time parameter
has fixed value. If we chose this fixed value to 1 and we denote this diffeomorphism with φ1, it follows
g0 = Id and g1 = φ1 (see [1]), therefore the action of t ∈ R over Ω defined by g can be see as a
parametrisation of a collection of diffeomorphisms that ranges continuously from Id to φ1.
If we equate a smooth vector field with the infinitesimal variation δ = d

dt

∣∣
t=0

of a one parameter subgroup
of diffeomorphism g, we obtain a system of stationary ordinary differential equations where the unknown
is the one parameter subgroup g:

d

dt

∣∣∣
t=0

gtx = v(x) . (1)

That is equivalent to the system 
δgtx1 = v1(x1, x2, . . . , xD)

δgtx2 = v1(x1, x2, . . . , xD)
...

δgtxD = v1(x1, x2, . . . , xD) .

(2)
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Using the Newton notation for the derivative and following the vectorised notation for ordinary differ-
ential equations (introduced by Peano, 1890 [15], pag 203) the previous system can be written as ẋ = v(x).

If the infinitesimal variation is considered away from the origin of the real line, it can be proved that

d

dt

∣∣∣
t=τ

gtx = v(gτx) ; (3)

for the particular case τ = 1 and φ1 = g1, the last equation become

d

dt

∣∣∣
t=1

gtx = v(φ1(x)) .

Given a one parameter subgroup g is it possible to fix a point of Ω and consider g only as a function
of the time parameter. On the other side, fixing the time parameter, g can be considered as a function of
the points in Ω. In the first case, for a fixed point x0, we have

gx0 : R −→ Ω

t 7−→ gtx0 =: ϕ(t) ,

where the function ϕ is called integral curve of g passing through x0. It represents the trajectory of the
chosen point x0 under the forces defined by v as its tangent vector, at any moment in time. In the second
case, for a fixed t0, we have

gt0 : Ω −→ Ω

x 7−→ gt0x =: φt0(x) .

where φt0 is called flow of g at the time t0. It represents the position of any of the points x ∈ Ω after the
fixed time t0 has gone, starting at 0.
In the following commutative diagram, the function πi is the projection over the i-th factor of the Cartesian
product:

R× Ω

R

Ω

Ω.............................................................................................................................................................................................................. ............
g.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............

............

π1(x0)

...................................................................................................................
.....
.......
.....

π2(t0)

.............................................................................................................................................................................................................................................................. .........
...

ϕ(t), ϕ(t0) = x0

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
....................
............

φt0(x)

Using the definition of one-parameter subgroup, it is easy to prove that for a given t0, the flow φ is
one-to-one over Ω and that the integral curves of g, passing through the points x0 and x1 are coincident
or disjoint.
If the integral curve passing through x0 is the unknown of the problem defined by a vector field v, then
the problem (3) can be conveniently reformulated as a Cauchy problem:{

dϕ(t)
dt = v(ϕ(t))

ϕ(t0) = x0 ,
(4)
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where the initial condition ϕ(t0) = x0 specifies the through point of the integral curve and the value of
the time parameter at that point of the curve.
If the unknown of the problem is the flow of g at a given time t0, then the problem (3) can be conveniently
reformulated as a flow problem

dφt0
dt

= v(φt0) , (5)

where the dependence of φ over the time is defined via the underpinning one-parameter subgroup g

( ddt
∣∣
t=t0

gt(x) =
dφt0 (x)
dt ), and the time step t0, that represents the initial condition for the flow problem,

is indicated in subscript.

Example The voltage-controlled oscillator neuron model (VCON) is a non-linear 2D ODE that is used
here as example to show the difference between a Cauchy problem and a Flow problem:{

dx(t)
dt = α(y + τx)

dy(t)
dt = α(−σy + I + w cos(x) + τy)

Figure 1: Integration of a voltage-controlled oscillator neuron model (VCON) of parameters σ = 0.2,
I = 0.99, w = 1.4, α = 0.5, and τ = (τx, τy) = (−5, 0). Above the numerical solution of a Caucy problem
with initial condition φ(0) = (8, 8). Below the numerical solution of a Flow problem with initial condition
t0 = 1. Integral curve and flow is in gray for both cases, having the same direction of the tangent arrows.

The vector field is given by v(x, y) = (α(y + t1), α(−σy + I + w cos(x) + τ2)). If interested in the
integral curve ϕ(t), such that φ̇(t) = v(ϕ(t)) passing through the point x0 = (8, 8) at time t0 = 0, then
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we can reformulate it as a Cauchy problem:
dϕ(t)x
dt = α(ϕ(t)y + τx)

dϕ(t)y
dt = α(−σϕ(t)y + I + w cos(ϕ(t)x) + τy)

ϕ(0) = (8, 8) .

(6)

If interested in computing the diffeomorphism that the flow induces on the space after 1 unit of time has
elapsed, then the problem can be reformulated as a flow problem:{

dφ1,x
dt = α(φ1,y + τx)

dφ1,y
dt = α(−σφy + I + w cos(φ1,x) + τy) .

(7)

Numerical solutions can be visualized in figure 1.

We observe that Cauchy problem and the integral problem are two times the same problem (3), when
different input data are provided. In fact, solving the flow problem at a given point of Ω for any initial
condition t0 is equivalent to solve the Cauchy problem. Vice versa, solving the Cauchy problem at a fixed
time t0, for any point in x in Ω is equivalent to solve the flow problem. This also shows the importance of
the abstract concept of one parameter subgroup, that generalise both the Cauchy and the Flow problem
for any initial condition, both temporal and spatial.
It is worth to notice that both equation 4 and 5 have an equivalent integral formulation:

ϕ(t)− x0 =

∫ t

t0

v(ϕ(τ))dτ φt(x)− φt0(x) =

∫ t

t0

v(φτ (x))dτ (8)

Finally, the vector field v as appears in the equation 3 is called stationary velocity field (SVF) and
it defines the Cauchy problem (4) - when the aim is to find the integral curve for a given point - and
the flow problem (5) - when the aim is to find the position of all of the points in Ω after a given time
t0. Moreover we observe that the solution to a Cauchy problem is a curve, while the solution to a flow
problem is a diffeomorphisms over Ω.

1.1 Representing diffeomorphisms as vector field, Eulerian and Lagrangian coordi-
nates

Let g be a one-parameter subgroup of diffeomorphisms over Ω, compact subset of RD. Its flow at time 1
is given by φ1 = g1 and it can be represented as a vector field. In fact it become a function that at each
point x in the domain Ω associates a unique new vector φ1(x). This field defined by φ1 can be represented
in two reference frame: if the motion of a point x is considered respect to the absolute coordinate frame
then its coordinates are called Eulerian. If the motion is considered respect to the point x itself then the
coordinates are called Lagrangian (see figure 2). Passing from the Eulerian coordinates to the Lagrangian
coordinates requires the subtraction of the identity for each point:

φ̂1(x) = φ1(x)− x .

The symbolˆwill be utilised to avoid ambiguity between the two coordinate systems.
For computational reasons, it is preferable to take advantage of the Lagrangian coordinates when it is
possible. In this case shorter vector are stored at every point of the discretised domain and therefore it
is less prone to numerical error.
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Figure 2: Comparison between Eulerian and Lagrangian coordinate system for the flow φ1. The gray line
represents the integral curve through x of the one-parameter subgroup. The red arrow reprensents the
motion of the point x, at time 0 and at time 1 in Eulerian coordinates. The blue arrow represents the
same motion in Lagrangian coordinates.

1.2 When SVF depends on time: TVVF

If the components vi depends also on the time parameter t ∈ T , then v is called here time varying vector
field (TVVF) as well as non-stationary or non-autonomous. A TVVF can be written as

v(t, x) =
d∑
i=1

vi(t, x)
∂

∂xi

where vi belongs to C∞(T × Ω). Also TVVF defines Cauchy problem and flow problem (non-stationary
or non-autonomous). They can be rewritten as{

dϕ(t)
dt = v(t, ϕ(t))

ϕ(t0) = x0 ,

dφt0(x)

dt
= v(t, φt0(x)) , (9)

respectively. Their integral formulation is given by:

ϕ(t)− x0 =

∫ t

t0

v(τ, ϕ(τ))dτ φt(x)− φt0(x) =

∫ t

t0

v(τ, φτ (x))dτ (10)

1.3 Discretisation step: some concepts and notations

Digital images are discretised data-set representing fixed-time sections of the continuous reality (see rough
notes on image registration). This definition alone is enough to justify the use of a continuous model to
manipulate their transformations, therefore the passage from continuous to discrete does not happen only
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in the phase of image acquisition, but it is crucial in the application of the continuous models developed.
A vector field v defined over Ω can be discretised defining a D-dimensional (rectangular) grid within its
domain (see meshpoint model or midpoint model [13]) indicated with ∆Ω. The discretisation of v is the
restriction of v at the chosen discretised domain. The data structure to store discretised vector field is
the standard 5-dimensional matrix (see nibabel) where the fourth value that represents the time is always
zero. The operation of composition between continuous vector fields is performed in the discrete case with
a resampling, and it is based on the chosen algorithm for the interpolation of the input discrete function
(can be nearest-neighborhood, linear or cubic).

1.4 2D linear stationary ODE

It is possible to describe the behaviour of a system of ODE when the SVF that defines the problem is
linear. The model is given by: {

δgtx = ax+ by + tx

δgty = cx+ dy + ty
(11)

and it is uniquely defined by the matrix in homogeneous coordinates

A =

 a b tx
c d ty
0 0 1


where the matrix R = [[a, b], [c, d]] is the rotational part, and the vector T = [tx, ty]

T is the translational
part. The matrix A has only one fixed point, given by the solution of AxT = xT , and the behaviour of the
vector field around this point is provided by the values of the eigenvalue. The characteristic polynomial
equation of R is given by

λ2 − tr(R)λ+ det(R) = 0

and according to its solutions, the eigenvalues λ1 and λ2, we can have 4 different vector field configurations
(see [6] and [8]):

λ1,2 =
tr(A)

2
±
√(tr(A)

2

)2
− det(A) .

1. λ1 and λ2 are both real and have the same sign. If they are both positive, the fixed point is
a parabolic source (integral curves goes from the critical point toward the external), otherwise a
parabolic sink (integral curves goes to the critical point).

2. λ1 and λ2 are both real and have opposite signs, than the fixed point is a saddle.

3. λ1 and λ2 are complex conjugates, then the fixed point can be spiral (real part different from zero)
or a center (real part equals to zero) - these are the SVF generated by an element of SE(D).
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1.5 Exponential map for the Linear Case

Given a non-stationary linear Cauchy problem{
ϕ̇(t) = v(t, ϕ(t)) = Aϕ(t) + f(t)

ϕ(t0) = x0 ,
(12)

where A is a time-independent matrix of constant and f(t) contain the terms directly dependent on time.
The solution is given by

x(t) = exp(A(t− t0))x0 +

∫ t

t0

exp(A(t− τ))f(τ)dτ

= exp(A(t− t0))x0 + exp(At)

∫ t

t0

exp(−Aτ)f(τ)dτ .

When dealing with SVF the f(t) is zero, therefore the solution to the linear Cauchy problem is given by:

ϕ(t) = exp(A(t− t0))x0 .

Where the exponential of a matrix is defined as:

exp(At) =
∞∑
n=0

(At)n

n!
.

From Cayley-Hamilton theorem (any square matrix satisfies its own characteristic equation) it follows that
the exponential of a matrix can be expressed as a polynomial of degree D − 1 where D is the dimension
of the matrix:

exp(At) =

D−1∑
n=0

αnA
n .

1.6 2D Random generated SVF

At the moment, in the following experiments the SVF are generated in two ways:

1. SE(2)-generated SVF : field generated using an element of SE(2): the ground truth is know and the
integral curves are as simple as circles.

2. Gaussian generated SVF : generated using a Gaussian filter over a random vector field. There is no
ground truth in this case.

2 Involving Lie group theory: the log-Euclidean framework

The need for algebraic manipulation of stationary velocity fields and the diffeomorphisms generated by
them as their one parameter subgroup at the time-point 1, introduces two algebraic structures where
these elements live in.
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SE(2) generated SVF

Figure 3: Example of an SE(2)-generated SVF.
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Gaussian generated SVF

Figure 4: Example of a Gaussian generated SVF.
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2.1 Algebraic structures for SVF and diffeomorphisms

The set of SVF defines a vector space, indicated with Vect(Ω) with the canonical operations of addition
and scalar multiplication. The set of diffeomorphisms over Ω, indicated with Diff(Ω) defines a group with
the operation of composition.

It has been proved that there is at least one diffeomorphism in Diff(Ω), as close as we like to the
identity, that can not be expressed as a one parameter subgroup, for any possible value of the time
parameter (see[12]). Trusting the fact that useful diffeomorphisms to model image deformations are the
one embedded in the one parameter subgroup, we restrict the group of diffeomorphism Diff(Ω) to these
elements, indicating them with Diffg(Ω).

With this restriction is is possible to consider a correspondence between an SVF v ∈ Vect(Ω) and a
diffeomorphisms g1 = p ∈ Diffg(Ω) that maps v in p. This is called Lie exponential, and it is defined as

exp : Vect(Ω) −→ Diffg(Ω)

v 7−→ exp(v) = g1

where g1 is the one parameter subgroup that is generated by v at the time 1, or the solution of the flow
problem (5).

The relationship became more interesting if we consider that the tangent space of Diff(Ω) is the
infinite dimensional vector space of differentiable vector field over Ω, the previously defined Vect(Ω) [9].
Therefore the exponential map is a map from the linear tangent space to the space of diffeomorphisms
(only the one embedded in a one parameter subgroup) and the vector space of SVF is a linearization of
these diffeomorphisms.
Another results from Lie group theory ensure the local biiectivity between Diffg(Ω) and Vect(Ω) around
the origin and the identity element.

The biiection is given by the Lie exponential and by its local inverse, the Lie logarithm.
The flow problem, given in equation (5), with the initial condition t0 = 1 can be reformulated as

p = exp(v) , (13)

where exp is the Lie exponential, while the inverse problem (when defined!) can be reformulated as

v = log(p) . (14)

The diffeomorphisms p that arise form the previous equations deserve two ad hoc names: it will be called
deformation when considered in Eulerian coordinates and displacement when considered in Lagrangian
coordinates.

2.2 locally-defined operations

Diffeomorphisms can be composed and vector field can be summed or multiplied by scalar element, but
thanks to the local isomorphisms it is possible to have operations in Diff1(Ω) that reflect the sum and the
scalar product in the tangent plane, and an operation that reflect the composition in Vect(Ω):{

p1 � p2 = exp(log(p1) + log(p2))

λ~ p = exp(λ log(p)) = pλ
v1 ⊕ v2 = log(exp(v1) ◦ exp(v2)) .
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Figure 5: Schematic representation of Diff(Ω) Lie gorup of diffeomorphisms (gray shape), Diffg(Ω) subset
of diffeomorphisms embedded in a one parameter subgroup (blue lines on the gray shape) and Vect(Ω)
as its tangent vector space, linear approximation of Diff(Ω) at the identity.

I call the operation � exp-sum, ~ exp-multiplication and ⊕ log-composition. Quick investigation of their
behaviour respect to the inverse and neutral elements should be enough to justify the choice of the names
and symbols.

With the inherited structure of vector space in an open neighbour of the identity element e, it is
possible to define a metric (as for example dist(ϕ1, ϕ2) = || log(ϕ1) − log(ϕ2)||), norm, and therefore
compute statistics on the group of diffeomorphisms embedded in the one-parameter subgroup. In this
framework, numerical method for the computation of the exponential and the logarithm appears to be of
fundamental importance and the next sections are devoted to their investigations.

3 Inegrators

The exponential of an SVF v is a displacement p, that at each point of the grid associates the vector
defined by the one parameter subgroup defined by v at the time point 1, subtracted by the identity (the
term displacement is used in literature to indicate any vector field in Lagrangian coordinate, in these
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notes, to avoid confusion, I will use displacement of v only for the result of the exponential of an SVF):

p(x) = g1(x)− x ∀x ∈ Ω

An flow-integrator is a displacement ψ, defined over a discretization of Ω that approximate p = φ1,
solution of the flow problem (5):

||φ1(x)− ψ(x)|| < ε ∀x ∈ ∆Ω . (15)

A curve-integrator is a curve γ(t) defined over a discrete set of points {tn}Nn=0 that approximate φ solution
of the Cauchy problem (4):

||φ(tn)− γ(tn)|| < ε ∀n = 0, 1, ..., N . (16)

Flow integrators can be numerical or geometrical. Numerical integrators originates from a numerical
algorithm, while geometrical flow integrators originate from a numerical algorithm aimed to preserve
some of the geometrical property of the flow (to be read: [11]).

3.1 Numerical inegrators from Taylor series: Euler, Heun and Runge Kutta

Some consideration on the Taylor expansion lead to the following well known numerical curve-integrator,
that can be easily reformulated in term of flow-integrator to solve dφ1(x)

dt = v(φ1(x)). The integrators
proposed start at the identity flow φ0 = g0 and approximate φ1 in N steps, having divided the time-
parameter in N+1 equal parts tk = k/N , k = 0, ..., N. Each step of the integrator ψk is an approximation
of φtk , and therefore the error at each step is accumulated from all of the previous steps (see [4]).

Euler Method {
ψ0 = 0

ψk+1 = ψk + hv ◦ ψk
(17)

Where the integrator composed with the SVF v is always a discrete displacement (Lagrangian coordi-
nate) while the field not composed with the SVF can be a deformation (Eulerian coordinates) -summing
or subtracting the identity at both members. For computational purposes we will always deal with
displacement.

Midpoint Method {
ψ0 = 0

ψk+1 = ψk + hv ◦
(
ψk + h

2v ◦ ψk
) (18)

Euler Modified Method {
ψ0 = 0

ψk+1 = ψk + h
2

(
v ◦ ψk + v ◦ (ψk + hv ◦ ψk)

) (19)
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Heun Method {
ψ0 = 0

ψk+1 = ψk + h
4

(
v ◦ ψk + 3v ◦ (ψk + 2h

3 v ◦ ψk)
) (20)

Heun Modified Method{
ψ0 = 0

ψk+1 = ψk + h
4

[
v ◦ ψk + 3v ◦

(
ψk + 2h

3 v ◦ (ψk + h
3v ◦ ψk)

)] (21)

Runge Kutta Method 

ψ0 = 0

R
(1)
k = v ◦ ψk

R
(2)
k = v ◦ (ψk + 1

2R
(1)
k )

R
(3)
k = v ◦ (ψk + 1

2R
(2)
k )

R
(4)
k = v ◦ (ψk +R

(3)
k )

ψk+1 = ψk + h
6

[
R

(1)
k + 2R

(2)
k + 2R

(3)
k R

(4)
k

]
(22)

3.2 Numerical integrators based on the Scaling and Squaring

One of the most utilized numerical scheme for the numerical computation of equation dφ1
dt = v(φ1) is

the he scaling and squaring algorithm [2, 3]. As a phase flow method [16], it exploits the one parameter
subgroup property of the flow gs and the fact that, when v is small the approximation exp(u) ' 1 + v
holds:

φ1 = exp(v) =
(

exp(v/2N )
)2N ' (1 + v/2N

)2N
. (23)

Computational Burdeen of this method is given only by the performance of the N compositions.

In the polyaffine scaling and squaring (or fitted scaling and squaring), instead of approximating the
exponential of ṽ = 2−Nv with 1 + ṽ, we consider to exponentiate ṽ at each voxel independently, with a
numerical method. According to the nomenclature here proposed, it is a flow-integrator for the first part,
and a curve-integrator for the second part.
At the point x the vector ṽ(x) can be written as the sum of an affine transformation and a translation
Rx +T : if x is written as column vector in homogeneous coordinate, (x, 1)T and its derivative respect to

the one parameter subgroup is written as dφ1(x,1)T

dt = (ẋ, 0)T , then the equation (5) that is linearised in
(11) become [

ẋ
0

]
=

[
R T
0 0

] [
x
1

]
The rotational matrix can be computed as the linear part of the transformation using the jacobian of the
SVF at the point x, while the translational part is the identity (the position of x itself).
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Once the scaling step is performed, the computation of the approximation of ṽ = 2−Nv can be done
in various way. Exploiting a curve-integrator means compute the approximation of ṽ at each point of the
discretised domain (as done for the polyaffine scaling and squaring).

It is possible to use instead a flow-integrator to approximate ṽ, avoiding in this way the voxelwise
computation. For example if the flow-integrator is an Euler method we have:

dφ1
dt

= v(φ1) φ1 = exp(v) = (exp(v/2N ))2
N

= (ṽ)2
N
.

If ψ̃1 is the integrator of ṽ, then the its solution is given by:{
ψ̃0 = 0

ψ̃k+1 = ψ̃k + hṽ ◦ ψ̃k ,
(24)

and therefore

φ1 = (ψ̃1)
2N .

This last equation is well defined if we consider the fact that both SVF and diffeomorphism can be
expressed in a discretised form as vector field in Lagrangian coordinates (polyaffine Euler is not yet
implemented).

3.3 A method to automatic select the step-size

Within both the scaling and squaring and the polyaffine scaling and squaring method it is possible to
have an automatic selection of the step size. This is based on the number of squared scaling necessary so
that the length of the biggest vector of the vector field has size less than the size of a voxel (TODO see
code!)

3.4 Integration using Scipy

The framework Scipy provides some libraries to compute curve-integrators according to some methods.
Given an SVF v we can compute the integral curve at the voxel x from 0 to 1; if we then subtract the
position of the voxel to the resulting integral curve at time 1, we have obtained the displacement field at
the point x.

This method is a curve-integrator that exploit the scipy libraries. If compared to the flow methods is
much slower, but it provides a more accurate result for small deformation.

3.5 Even more numerical inegrators: implicit and adaptative

TODO: Methods based on the Taylor approximation are all explicit and take into account only one fixed
step size. Try also implicit methods (Adams Bashford) and adaptative (step size varies at each step
according to some criteria).

3.6 Another numerical integrator: series method combined with accelerating con-
vergence series

TODO
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4 A farm of examples
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5 Comparisons and Results

Some problems arises when we need to compare different numerical methods. First of all the choice of
the number of steps has an impact in the choice of the method, and it is not obvious that increasing
the number of steps always leads to a better solution. The following subsection illustrates this issue in a
simpler example.

5.1 Examples about the stability of a numerical method

A problem can be well posed from an analysis point of view but unfruitful from a numerical point of view.
In this case a problem is said to be ill-conditioned.
We examine the case of a Cauchy problem defined by a 1-d TVVF (easily generalizable to multiple
dimensions):

Definition 5.1 Given a TVVF v(t, x) defined over T × Ω ⊆ R × R, the Cauchy problem that it defines
with an initial condition {

ϕ̇(t) = v(t, ϕ(t))

ϕ(t0) = x0 ,

it said to be well-posed, or stable, if the solution to the perturbed problem associated to the original one
has a solution close enough to the solution of the original. Formally, if

1. Exists only one solution ϕ(t) (v(t, x) has Lipschitz condition in the x variable).

2. For all ε > 0 exists a constant k(ε) > 0 such that for all ε0 and δ(t), |ε0| < ε and δ is continuous
on its domain T and |δ(x)| < ε for all t ∈ T , than the problem{

ϕ̇(t) = v(t, ϕ(t)) + δ(t)

ϕ(t0) = x0 + ε0 ,

called perturbed problem, has a unique solution ˜ϕ(t) that satisfies

|ϕ(t)− ϕ̃(t)| < k(ε)ε .

We observe that ε is a bound for δ(t) and ε0 that defines the perturbed problem. The change in the
perturbation δ has to be commensurate to the perturbation on the initial condition with respect to a
value that influences the difference between the exact solution and the solution of the perturbed problem.
Sufficient condition for a Cauchy problem to be well-posed is v to be continuous and Lipschitz [4].

Definition 5.2 A well posed Cauchy problem defined by a TVVF v(t, x) and an initial condition, is said
to be ill-conditinoned if k(t) is bigger than the maximum value of the difference of the solution and the
solution of the perturbed problem:

k(ε) > max
t∈T
|ϕ(t)− ϕ̃(t)| .
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Example Considering a TVVF, dependent on the parameter α, v(t, x) = αx − (α + 1) exp(−t), the
associated Cauchy problem for a given initial condition is given by:{

dϕ(t)
dt = αϕ(t)− (α+ 1) exp(−t)

ϕ(0) = 1 .

It is easy to verify that the analytical solution is given by ϕ(t) = exp(−t). Adding a perturbation on its
initial condition we obtain {

dϕ(t)
dt = αϕ(t)− (α+ 1) exp(−t)

ϕ(0) = 1 + ε0

Its solution is given by ϕ̃(t) = exp(−t) + ε0 exp(αt) and therefore

|ϕ(t)− ϕ̃(t)| = |ε0 exp(αt)| .

For high values of α the problem is ill-conditioned even for small ε0. Numerically this leads to the fact
that a method as the Euler, does not converges increasing the number of steps for α above a threshold,
as can be seen in figures 6, 7 and 8.

Figure 6: Euler method to approximate the solution of the Cauchy problem defined by dϕ(t)
dt = αϕ(t) −

(α+ 1) exp(−t), passing throug ϕ(0) = 1, at the time point 1. In this case α = 2: increasing the number
of steps we have a reduction in the errors. The graph on the right shows both the final error and the
stepwise errors for each choiche of the number of steps.
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Figure 7: Euler method to approximate the solution of the Cauchy problem defined by dϕ(t)
dt = αϕ(t) −

(α + 1) exp(−t), passing throug ϕ(0) = 1, at the time point 1. In this case α = 7: an increase in the
number of steps does not imply a reduction in the errors. With 25 steps we have a bigger error than with
10 steps.

Figure 8: Euler method to approximate the solution of the Cauchy problem defined by dϕ(t)
dt = αϕ(t) −

(α + 1) exp(−t), passing throug ϕ(0) = 1, at the time point 1. In this case α = 12: an increase in the
number of steps never imply a reduction in the errors. A 3 steps method provides the best result.

The same concepts of well-posedness and ill-conditioned for the flow problem defined by the generic
TVVF or SVF is not provided yet (TODO!). Here we consider only the numerical results of a wide enough
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class of examples and we consider them as statistically significant (with a visual statistical analysis) to
be able to extend the results to the generic case. - not very scientific but this is what we have so far -

Results at the moment are based on what we see with some numerical tests.

5.2 se(2)-generated SVF results

A first comparison between the methods for the SE(2)-generated vector field with the same number of
steps for each method (10) results in the figure 9.

Figure 9: A data-set of 20 se(2)-generated SVF are sampled wth the rotation angle θ between −π/4 and
π/4 excluding an interval centerd on the zero of radius 0.01. First row of coloured values in the foreground
of the boxplot are teh mean of the resulting errors, values in black in the secon row are the mean of the
computational time in seconds.

5.3 Number of iterations V.S. errors, some empirical considerations

If we consider the flow-integrator methods scaling and squaring, polyaffine scaling and squaring, Euler,
midpoint, Euler modified, Heun, Heun modified and Runge Kutta 4 for a given SE(2)-generated SVF,
where the ground truth of the exponential is available, we have the relation between the number of steps
of each method and the error given in figure 10. As expected, the polyaffine scaling and squaring reach the
solution in 1 step (the ODE is linear). Scaling and squaring is faster than Euler, but any other methods
gets better than them (remarkably the RK4 behave really well for the linear case; Heun modified is
comparable to RK4 after 2 steps).

The vertical dashed line represent the number of iteration automatically computed by the method
presented in section 3.3. This shows that the automatic computation can be improved with a +2, or
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settings the threshold length equals to the size of 1/4 of a voxel.

Figure 10: .

For the non-linear case, (Gauss-generated SVF) we do not have a ground truth. According to the
results obtained in the linear case we selected RK4 as a fake ground truth. Result are shown in figure 11.
Repeatedly sampling shows consistency in the results for the chosen parameters.

Heun modified is based on a similar concept than the RK4, so no surprise if it is the one with smallest
error. The polyaffine scaling and squaring behave well with this fake ground truth.

These 2 experiments where useful to have some information to chose an ideal number of steps for each
method:

1. Number of steps manually tuned for the linear case for each method: [7, 1, 40, 10, 10, 10, 10, 1] (same
order as in the legend).

2. Number of steps manually tuned for the non linear case for each method: [8, 8, 40, 10, 10, 10, 10, 8].

With this choice of parameters we can repeat the experiments for a bigger data samples for both the
linear and the non linear cases. Results are shown in figures 12 and 13.
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Figure 11: .

Figure 12: .

TODO list

1. Measure the steps error to see the stability of each method.
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Figure 13: .

2. Validate numerical methods for the computation of the exp measuring the inverse consistency.

3. Build “ground truth” from SVF generated with ADNII database with up sampling integrate with
Euler scheme and down sampling afterwards. Compare these to the one computed with other
methods in the original space.

4. Begin a collection of examples of stationary ode, where the closed analytical form is available. So
we have ground truth in less straightforward situation than SE(2).

5. Extend the closed form integrator to all of the possible linear case (not only SE(2))

6. series method and accelerating convergence series.

7. Look for a ground truth for small-curled vector fields.

8. Explore the geometrical integrators.

9. discuss about the shifted exponential function for the integration scheme: [7] pag. 2 and [5].

10. Explore other scaling and squaring flow-integrators.

TODO list code

1. Test exp code, each numerical method, once there is some ground example.

2. Integrate algorithm for the computation of the Logarithm (ISS or Bossa or some other things will
come).
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3. Speed, computational complexity: refactor the code so to have better operations for the multiplica-
tion and scalar multiplication that are correctly inherited in the new object. (requires some more
tests and refactoring of the sfv methods class!)
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