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Details of the proof of the generalized scaling and squaring with approxi-
mated exponential integrator formula.

Thesis: Let Ω ⊂ Rd be an image’s domain (d = 2, 3 for bi and tri-dimensional
images), φ : Ω → Ω a diffeomorphism and v its tangent vector field that defines
the transformation’s velocities and directions at each point of Ω.
The relationship between v and φ is given by the stationary ODE

dφt
dt

= v(φt), φ0 = Id , (1)

where φ0 coincides with the identity function Id defined on Ω, and the solution
at the time point t = 1 coincides with the diffeomorphism φ. The solution is
given by

φ1(x) ' x + v(x) +
1

2
Jv(x)v(x) ∀x ∈ Ω . (2)

Some introductory facts: At the core of the ODE (1) there is the concept of
flow of diffeomorphisms. It is defined as the family of diffeomorphisms {φt}t∈R
continuously parametrized by a time-parameter t, such that φ0 equals the iden-
tity Id and that satisfy the one-parameter subgroup property φt ◦ φs = φt+s.

When the one-parameter subgroup is applied to a point x in Ω, the new
point φt(x) can be denoted with x(t) and its time derivative with ẋ(t). Equation
(1), when considered for one particular point, can be rewritten as

ẋ(t) = v(x(t)) x(0) = x . (3)

Some more introductory facts: For any real d × d matrix A and any d-
dimensional column vector b, it holds

ẋ(t) = Ax(t), x(0) = b =⇒ x(t) = ϕ0(tA)b ∀t ∈ R . (4)

ẋ(t) = Ax(t) + b, x(0) = 0 =⇒ x(t) = tϕ1(tA)b ∀t ∈ R . (5)
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Where ϕ0(Z) is the matrix exponential of eZ =
∑∞

j=0
Zk

j! , whose numerical

computation is performed with expm, and ϕ1(Z) is the shifted Taylor expan-

sion given by (ϕ0(Z) − I)Z−1 =
∑∞

j=0
Zk

(j+1)! [2]. For a positive integer k,

ϕk(Z) =
∑∞

j=0
Zk

(j+k)! .

Explanation of the equation (2): Without any loss of generality it is always
possible to translate the coordinate frame so that the initial position of x(0)
coincides with the origin of the axis 0. The translation is given by y(t) :=
x(t) − x(0), and in this new frame we have y(0) = 0, x(t) = y(t) + x(0), and
equation (3) can be written as:

ẏ(t) = v(y(t) + x(0)) y(0) = 0 . (6)

The Taylor expansion of the SVF v around x(0) computed at y(t) + x(0) for
any real t provides

ẏ(t) = v(y(t) + x(0)) = v(x(0)) + Jv(x(0))y(t) +O(y(t)2) .

This last expansion, gives us the hint ot follow the exponential integrators
approach [1]. It consists in the strategy of separating the linear part (whose
integration is provided by the exponential map expm) and the non-linear part
of the SVF. Equation (6) can be written as

ẏ(t) = v0 + Jv0y(t) +Nv(y(t)) , y(0) = 0 , (7)

where v(x(0)) is indicated with v0 for notation convenience and Jv0
is the d× d

Jacobian of v0. The non-linear part of the SVF, indicated with Nv(y(t)), can be
seen as an operator on the space of the SVF over Ω, that subtract the linear part
of v computed with the Taylor expansion of v in x(t) around x(0). For a fixed
x = x(0) ∈ Ω, on which is acting a one-parameter subgroup of diffeomorphisms,
it is defined by:

Nv(y(t)) = v(y(t) + x(0))−
(
v0 + Jv0

y(t)
)

= v(x(t))− v(x(0))− Jv(x(0))(x(t)− x(0)) .

It follows easily that Nv(y(t)) = 0 and 1 Nv(y(t)) ∈ O
(
(x(t) − x(0))2

)
when

x(t)→ x(0).

When the time-parameter t is in a small neighbour of the origin (as it happens
when scaling the SVF by an appropriate factor in the generalized scaling and
squaring framework), at the initial ODE problem we can associate a linearised
version:

ẏ(t) = v0 + Jv0y(t) , y(0) = 0 . (8)

1 Given f , g and h, vector valued function in an Euclidean space, with the notation
f(x) = g(x) + O(h(x)) for x → x0 we mean that exists a real positive M and a δ
such that ‖f(x)− g(x)‖ < M‖h(x)‖ when ‖x− x0‖ < δ.
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Since Nv(y(t)) ∈ O
(
y(t)2

)
, the solution of the linearised problem 8 approxi-

mates the solution of the initial problem (6).

Passing in homogeneous coordinates, equation (8) can be written as[
ẏ
0

]
=

[
Jv0 v0

0 0

] [
y(t)

1

]
And using the implication (4), we have that the solution, written again in ho-
mogeneous coordinates, is[

y(t)
1

]
= expm

(
t

[
Jv0

v0

0 0

])[
0
1

]
, (9)

which is the exact solution of the linearised ODE, that approximates the sought
solution for any time parameter t close enough to 0.

In order to avoid the computational cost of the exponential of a matrix, and to
have an approach that can be easily vectorized, we can apply (5) to the linearised
problem (8):

y(t) = tϕ1(tJv0)v0 .

and translating the coordinate frame to the initial one with y(t) = x(t)− x(0),
it follows:

x(t) = x(0) + tϕ1(tJv0
)v0 , x(1) = x(0) + ϕ1(Jv0

)v0 ,

that is the solution of the linearised ODE associated to (1) at the point x.

For its numerical computation, we can approximate ϕ1 truncating it at its
second order:

x(t) = x + tϕ1(tJv0
)v0

= x + t
(
I +

tJv0

2
+
t2J2

v0

6
+ · · ·

)
v0

= x + tv0 +
t2

2
Jv0

v0 +O
(
t3J2

v0
v0

)
.

for t→ 0. Therefore the solution to the ODE 1 can be written as

φt(x) = x + tv0 +
t2

2
Jv0

v0 +O
(
t3J2

v0
v0

)
+O

(
(x(t)− x(0))2

)
, (10)

where the first asymptotic error limit is a consequence of having truncated ϕ1,
and the second as a consequence of having linearised the problem.
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Since O
(
(x(t) − x(0))2

)
= mO

(
v2(x(t))

)
for t → 0 and some positive real

m, the last equation can be rewritten as a function defined over Ω as:

φt = Id + tv +
t2

2
Jvv +O

(
t3J2

vv + v2(x(t))
)
, (11)

where Jv is the Jacobian function that at each x provides the vector valued
operators Jv(x).

When t = 1 we have that the initial ODE system can have approximation
solution as:

φ1 ' Id + v +
1

2
Jvv , (12)

Using equation (12) in the generalized scaling and squaring: The equa-
tion just derived can be applied to the SVF w, after having it reduced by a
multiplicative factor of 2N in the scaling and squaring framework. The final al-
gorithm that improves the currently used scaling and squaring is given by the
following steps:

1. Scaling of w by a factor of 2N : v = w/2N .
2. The approximation of the Lie exponential, indicated with ẽxp(v) si computed

as

ẽxp(v) = x + v(x) +
1

2
Jv(x)v(x) .

3. The result ẽxp(v) is pair-wise composed by itself 2N -times.

Notes for the next steps: (for a possible paper that may follow the workshop
WBIR)

1. Computational complexity analysis.
2. Error analysis.
3. Extension to TVVF approximating the time variation with polynomials.

Working on where the following equation originates [2]:

dφt
dt

= Aφt + ct, φ0 = 0 =⇒ φt = t2ϕ2(tA)c ∀t ∈ R . (13)

where the separation between the temporal and the spatial transformation
in Aφt + ct, may be given by the fact that the dimension is stored in the
fourth component of the SVF. This requires further investigations...!

4. Extension to TVVF through autonomisation of variables (see slides notes).
5. Autonomisation for scaling and squaring. See if there something is making

sense.
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