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1 Generalized scaling and squaring with approximated
exponential integrator

Details of the proof of the generalized scaling and squaring with approximated
exponential integrator formula.

Thesis: Let Ω ⊂ Rd be an image’s domain (d = 2, 3 for bi and tri-dimensional
images), φ : Ω → Ω a diffeomorphism and v its tangent vector field that defines
the transformation’s velocities and directions at each point of Ω.
The relationship between v and φ is given by the stationary ODE

dφt
dt

= v(φt), φ0 = Id , (1)

where φ0 coincides with the identity function Id defined on Ω, and the solution
at the time point t = 1 coincides with the diffeomorphism φ. The solution is
given by

φ1(x) ' x + v(x) +
1

2
Jv(x)v(x) ∀x ∈ Ω . (2)

Some introductory facts: At the core of the ODE (1) there is the concept of
flow of diffeomorphisms. It is defined as the family of diffeomorphisms {φt}t∈R
continuously parametrized by a time-parameter t, such that φ0 equals the iden-
tity Id and that satisfy the one-parameter subgroup property φt ◦ φs = φt+s.

When the one-parameter subgroup is applied to a point x in Ω, the new
point φt(x) can be denoted with x(t) and its time derivative with ẋ(t). Equation
(1), when considered for one particular point, can be rewritten as

ẋ(t) = v(x(t)) x(0) = x . (3)

Some more introductory facts: For any real d × d matrix A and any d-
dimensional column vector b, it holds

ẋ(t) = Ax(t), x(0) = b =⇒ x(t) = ϕ0(tA)b ∀t ∈ R . (4)
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ẋ(t) = Ax(t) + b, x(0) = 0 =⇒ x(t) = tϕ1(tA)b ∀t ∈ R . (5)

Where ϕ0(Z) is the matrix exponential of eZ =
∑∞

j=0
Zk

j! , whose numerical

computation is performed with expm, and ϕ1(Z) is the shifted Taylor expan-

sion given by (ϕ0(Z) − I)Z−1 =
∑∞

j=0
Zk

(j+1)! [3]. For a positive integer k,

ϕk(Z) =
∑∞

j=0
Zk

(j+k)! .

Explanation of the equation (2): Without any loss of generality it is always
possible to translate the coordinate frame so that the initial position of x(0)
coincides with the origin of the axis 0. The translation is given by y(t) :=
x(t) − x(0), and in this new frame we have y(0) = 0, x(t) = y(t) + x(0), and
equation (3) can be written as:

ẏ(t) = v(y(t) + x(0)) y(0) = 0 . (6)

The Taylor expansion of the SVF v around x(0) computed at y(t) + x(0) for
any real t provides1

ẏ(t) = v(y(t) + x(0)) = v(x(0)) + Jv(x(0))y(t) +O(y(t)2) .

This last expansion, gives us the hint ot follow the exponential integrators
approach [2]. It consists in the strategy of separating the linear part (whose
integration is provided by the exponential map expm) and the non-linear part
of the SVF. Equation (6) can be written as

ẏ(t) = v0 + Jv0
y(t) +Nv(y(t)) , y(0) = 0 , (7)

where v(x(0)) is indicated with v0 for notation convenience and Jv0 is the d× d
spatial Jacobian of v0. The non-linear part of the SVF, indicated with Nv(y(t)),
can be seen as an operator on the space of the SVF over Ω, that subtract the
linear part of v computed with the Taylor expansion of v in x(t) around x(0).
For a fixed x = x(0) ∈ Ω, on which is acting a one-parameter subgroup of
diffeomorphisms, it is defined by:

Nv(y(t)) = v(y(t) + x(0))−
(
v0 + Jv0y(t)

)
= v(x(t))− v(x(0))− Jv(x(0))(x(t)− x(0)) .

It follows easily that Nv(y(0)) = 0 and Nv(y(t)) ∈ O
(
(x(t) − x(0))2

)
when

x(t)→ x(0).

When the time-parameter t is in a small neighbour of the origin (as it happens
when scaling the SVF by an appropriate factor in the generalized scaling and

1 Given f , g and h, vector valued function in an Euclidean space, with the notation
f(x) = g(x) + O(h(x)) for x → x0 we mean that exists a real positive M and a δ
such that ‖f(x)− g(x)‖ < M‖h(x)‖ when ‖x− x0‖ < δ.
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squaring framework), the non linear part is small, and at the initial ODE problem
we can associate a linearised version:

ẏ(t) = v0 + Jv0
y(t) , y(0) = 0 . (8)

Since Nv(y(t)) ∈ O
(
y(t)2

)
, the solution of the linearised problem 8 approxi-

mates the solution of the initial problem (6).

Passing in homogeneous coordinates, equation (8) can be written as[
ẏ
0

]
=

[
Jv0

v0

0 0

] [
y(t)

1

]
And using the implication (4), we have that the solution, written again in ho-
mogeneous coordinates, is[

y(t)
1

]
= ϕ0

(
t

[
Jv0 v0

0 0

])[
0
1

]
, (9)

which is the exact solution of the linearised ODE, that approximates the sought
solution for any time parameter t close enough to 0.

In order to avoid the computational cost of the exponential of a matrix, and to
have an approach that can be easily vectorized, we can apply (5) to the linearised
problem (8) to obtain the following solution:

y(t) = tϕ1(tJv0
)v0 .

and, by translating the coordinate frame to the initial one with y(t) = x(t)−x(0),
it follows:

x(t) = x(0) + tϕ1(tJv0)v0 , x(1) = x(0) + ϕ1(Jv0)v0 ,

that is the solution of the linearised ODE associated to (1) at the point x.

For its numerical computation, we can approximate ϕ1 truncating it at its
second order:

x(t) = x + tϕ1(tJv0
)v0

= x + t
(
I +

tJv0

2
+
t2J2

v0

6
+ · · ·

)
v0

= x + tv0 +
t2

2
Jv0

v0 +O
(
t3J2

v0
v0

)
.

for t→ 0. Therefore the solution to the ODE 1 can be written as

φt(x) = x + tv0 +
t2

2
Jv0

v0 +O
(
t3J2

v0
v0

)
+O

(
(x(t)− x(0))2

)
, (10)
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where the first asymptotic error limit is a consequence of having truncated ϕ1,
and the second as a consequence of having linearised the problem.

For t→ 0, the last equation can be rewritten as a function defined over Ω as:

φt = Id + tv +
t2

2
Jvv +O

(
t3J2

vv + (x(t)− x(0))2
)
, (11)

where Jv is the Jacobian function that at each x provides the vector valued
operators Jv(x).

When t = 1 we have that the initial ODE system can have approximation
solution as:

φ1 ' Id + v +
1

2
Jvv , (12)

Using equation (12) in the generalized scaling and squaring: The equa-
tion just derived can be applied to the SVF w, after having it reduced by a
multiplicative factor of 2N in the scaling and squaring framework. The final al-
gorithm that improves the currently used scaling and squaring is given by the
following steps:

1. Scaling of w by a factor of 2N : v = w/2N .
2. The approximation of the Lie exponential, indicated with ẽxp(v) si computed

as

ẽxp(v) = x + v(x) +
1

2
Jv(x)v(x) .

3. The result ẽxp(v) is pair-wise composed by itself 2N -times.

2 Product of two vector fields: an attempt to compute
the Taylor series

There are no natural way in defining the product between stationary velocity
fields (or in general vector fields). As an attempt we exploit the concept of
directional derivative; aim of this paragraph is to present how this is defined,
how the Jacobian matrix can be involved in the computations and how the
notation ∂

∂xi
to indicate the elements of the basis of the real vector space can be

considered.
Let Ω be a subset of Rd domain of a continuous real valued function f : Ω →

R and domain of a velocity field u : Ω → Rd. Considering d = 2 to simplify the
notation, we can write u in components as

u(x, y) = (ux(x, y), uy(x, y))

Where the components of u are real valued functions defined over the domain,
ux : Ω → R, uy : Ω → R.
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The directional derivative of f in the direction of u is, by definition, given
by

Duf := ux
∂f

∂x
+ uy

∂f

∂y
, (13)

and it is a function defined over Ω if the partial derivative of f are defined.

The directional derivative of f in the direction of u at the point (x0, y0) is
defined as

Duf(x0, y0) := ux(x0, y0)
∂f(x0, y0)

∂x
+ uy(x0, y0)

∂f(x0, y0)

∂y
.

Given two SVF u and v (or more generally two vector fields)

u(x, y) = (ux(x, y), uy(x, y)) v(x, y) = (vx(x, y), vy(x, y)) ,

one of the possible definition of product between them is as directional derivative
of the components of the vector field v in the direction of u:

Duv :=
(
Duvx,Duvy

)
. (14)

It results that

Duv :=
(
ux
∂vx
∂x

+ uy
∂vx
∂y

, ux
∂vy
∂x

+ uy
∂vy
∂y

)
We observe that Duv is defined if vx and vy are differentiable and that it is a
vector field as well.

First consequence is that the product introduced is equivalent to the product
of the Jacobian of v, indicated with Jv, times the vector field u:

Duv =
(
ux
∂vx
∂x

+ uy
∂vx
∂y

, ux
∂vy
∂x

+ uy
∂vy
∂y

)
=

[
∂vx

∂x
∂vx

∂x
∂vy

∂x
∂vy

∂y

] [
ux
uy

]
= Jvu .

The Lie bracket of two SVF based on this definition, is provided by

[u,v] := Duv −Dvu = Jvu− Juv ,

that is defined in analogy with the Lie bracket for matrix Lie algebra: let A and
B square matrices, their Lie bracket is given by

[A,B] := AB −BA .

The sequential application of directional derivative of SVF is not free of
deceptions. When three SVF, u, v and w, are given it is relatively easy to see
that we can have two possible chain derivative:

DuDvw := Du

(
Dvwx,Dvwy

)
= JwJvu + uT

(
H(wx) + H(wy)

)
v

DuDvw := D(Duvx,Duvy)w = JwJvu
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where H is the Hessian matrix (please verify the computations). In the first case
an expression as Dn

vv will soon be a nightmare, while in the second case, it holds
by induction that Dn

vv = Jn−1
v v.

For general dimension: Generalizing the definition to dimension d, forΩ ⊆ Rd

it follows that the directional derivative of the function f defined over Ω in the
direction of the d dimensional SVF u is given, from 13, by:

Duf :=

d∑
i=1

ui
∂f

∂xi
, (15)

where ui are the components of the SVF, i.e. continuous real valued functions
defined over Ω, and xi are the coordinates of the space. When the directional
derivative is computed at the point x, previous equation can be written as

Duf(x) :=

d∑
i=1

ui(x)
∂f(x)

∂xi
,

Given two SVF, u = (u1, u2, ..., ud) and v = (v1, v2, ..., vd) their product results
to be

Duv :=
(
Duv1,Duv2, ...,Duvd

)
. (16)

It results

Duv :=
( d∑

i=1

ui
∂v1
∂xi

,

d∑
i=1

ui
∂v2
∂xi

, . . . ,

d∑
i=1

ui
∂vd
∂xi

)
= Jvu ,

where the Jacobian came out from the same computations previously done in
dimension 2.

Note about the use of a mathematical notation: From an algebraic point
of view, the directional derivative can be considered as the action (in an algebraic
sense) of the algebra of vector fields defined over Ω on the ring of the infinite
differentiable functions C∞(Ω). To give emphasis on this operation in the nota-
tion, some authors used ∂

∂xi
to indicate the elements of the base. Therefore an

SVF, according to this notation, can be indicated with

u = (u1, u2, . . . , ud) =

d∑
i=1

uiei =

d∑
i=1

ui
∂

∂xi

Where the elements of the base of the real space ei have been indicated with
∂

∂xi
. The catalogue of the things can be done with an SVF with the notation

u =
∑d

i=1 ui
∂

∂xi
becomes simpler:
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– evaluation at the point x of the domain Ω:

u(x) =

d∑
i=1

ui(x)
∂

∂xi

∣∣∣
x

that is the vector u(x) at the point x.
– action on the function f as partial derivative:

Duf =

d∑
i=1

ui(x)
∂f

∂xi

– action on the function f as partial derivative at the point x:

Duf(x) =

d∑
i=1

ui(x)
∂f

∂xi

∣∣∣
x

=

d∑
i=1

ui(x)
∂f(x)

∂xi

In the SVF product, this elegant notation can create problems if we forget
that ∂

∂xi
has the dual value of element of base and directional derivative. Using

this notation, the product is computed as

Duv =

d∑
i=1

ui
∂

∂xi

( d∑
j=1

vj
∂

∂xi

)
=

d∑
i,j=1

ui
∂vj
∂xi

∂

∂xj

where ∂
∂xi

acts linearly on the components of v belonging to C∞(Ω) as partial
derivative. The last result is still an SVF, and therefore can act on f , giving as
result:

(Duv)f =

d∑
i=1

ui
∂

∂xi

( d∑
j=1

vj
∂

∂xi

)
f =

d∑
i,j=1

ui
∂vj
∂xi

∂f

∂xj

But, if v is acting on a function f before the application of the directional
derivative, we have a different results where the intermediate step is not any
more an SVF:

Du(vf) =

d∑
i=1

ui
∂

∂xi

( d∑
j=1

vj
∂f

∂xi

)
=

d∑
i,j=1

ui
∂vj
∂xi

∂f

∂xj
+

d∑
i,j=1

uivj
∂2f

∂xi∂xj
.

It follows that (Duv)f 6= Du(vf).
To see this it in detail we consider the action of a single element of the base

∂
∂xi

over the vector field u:

∂

∂xi
(u)f =

∂

∂xi
(u1, u2, . . . , ud)f

= (
∂u1
∂xi

,
∂u2
∂xi

, . . . ,
∂ud
∂xi

)f

= (
∂u1
∂xi

∂

∂x1
+
∂u2
∂xi

∂

∂x2
+ · · ·+ ∂ud

∂xi

∂

∂xd
)f

=
∂u1
∂xi

∂f

∂x1
+
∂u2
∂xi

∂f

∂x2
+ · · ·+ ∂ud

∂xi

∂f

∂xd
.
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While if u act as directional derivative over a function f before the derivation:

∂

∂xi
(uf) =

∂

∂xi

(
u1

∂f

∂x1
+ u2

∂f

∂x2
+ · · ·+ ud

∂f

∂xd

)
=
∂u1
∂xi

∂f

∂x1
+ u1

∂2f

∂x1xi
+
∂u2
∂xi

∂f

∂x2
+ u2

∂2f

∂x2xi
+ · · ·+ ∂ud

∂xi

∂f

∂xd
+ ud

∂2f

∂xdxi

So the notation ∂
∂xi

changes his meaning, according to the order of operation.
Going back to the formula of the chain SVF product, in consequence of

what just seen, the two different definitions DuDvw = Du

(
Dvwx,Dvwy

)
and

DuDvw = D(Duvx,Duvy)w differs for the order in the application of the opera-
tions.

Taylor series of SVF: Using the Occam razor, where the simpler options is the
right one (but with no mathematical justification for the moment!), we define
the product of two SVF as DuDvw := D(Duvx,Duvy)w. In consequence of this,

as noticed before, it follows that Dn
uu = Jn−1

u u and therefore the Taylor series
of is expressed by:

exp(tu) =

N∑
j=0

tjuj

j!
= Id +

N∑
j=1

tjJj−1
u u

j!
.

Numerical examples showed convergence behaviour in the linear case.

3 Homographies-based SVF

To gain more information on the validity of each method we need to have more
examples where the ground truth is given, other than the linear case.

4 Memorandum

1. Computational complexity analysis.
2. Error analysis.
3. Extension to TVVF approximating the time variation with polynomials.

Working on where the following equation originates [3]:

dφt
dt

= Aφt + ct, φ0 = 0 =⇒ φt = t2ϕ2(tA)c ∀t ∈ R . (17)

where the separation between the temporal and the spatial transformation
in Aφt + ct, may be given by the fact that the dimension is stored in the
fourth component of the SVF. This requires further investigations...!

4. Extension to TVVF through autonomisation of variables (see slides notes).
5. Autonomisation for scaling and squaring. See if there something is making

sense.
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