
Abstract—In highly interactive applications, low latency (the
time between a user’s action, and the response to this action) is
critical for a good user experience. Traditional GPU architectures
can make very low latencies difficult to achieve. This is because
they are designed first and foremost to implement the painter’s
algorithm - a rendering algorithm that trades-off visual realism
for moderate computational speed and high scene dynamism.
The dataflow programming paradigm, along with dedicated
toolchains such as Maxeler’s MaxCompiler, enable the design
of application-specific graphics accelerators. Such accelerators,
however, have the advantage that their architecture can be com-
pletely customised. In this paper we present a custom renderer
that composites 2D sprites and maps to emulate a graphical
user interface. It was designed to facilitate user interaction tests
described in our previous work. Our design is ultra low latency,
updating what is being driven to the display within 1 ms of
receiving user input. This is far lower than traditional GPUs.
We describe the operation of our renderer, and our novel DVI
display driver output stage. We measure a latency of under 1 ms
for our renderer, with an end-to-end delay of 6 ms for our whole
apparatus. We compare this with the end-to-end latency of the
same apparatus built with a modern GPU, which we measure at
20 ms.



Ultra Low Latency Dataflow Renderer

Sebastian Friston and Anthony Steed
University College London, Computer Science Department

Gower Street
London WC1E 6BT, UK

E-mail: sebastian.friston.12@ucl.ac.uk, a.steed@cs.ucl.ac.uk

Simon Tilbury and Georgi Gaydadjiev
Maxeler Technologies Ltd.

1 Down Place
London W6 9JH, UK

E-mail: s.tilbury@maxeler.com, georgi@maxeler.com

I. INTRODUCTION

Computer graphics algorithms create images by simulating
the transport of light through an environment to the viewer.
The algorithms that perform this simulation trade-off fidelity,
computation time and scene dynamism, optimising for one
or another depending on the application [1]. For real-time
rendering, arguably the most popular algorithm is the painter’s
algorithm. In this algorithm primitives (triangles) that make up
the geometry of a scene are projected onto a viewing plane.
For each fragment (nominally a texel on the plane) the colour
of the surface of the primitive under that location is computed.
The colour is based on an approximation of the transport
of light from illumination sources in the scene to the view
plane [2]. This is computationally efficient. However until all
primitives have been processed, the frame cannot be displayed
as any portion of it could change in the future. There are
applications for which these characteristics are suboptimal.
Examples are highly interactive applications such as virtual
reality or simulators.

Modern Graphics Processing Units (GPUs) are highly
parallel stream processors; the ancestors of these cards im-
plemented the painter’s algorithm algorithm in fixed logic, and
their architecture is optimised for this algorithm still [3], [2].
The implementation details of the algorithm are up to the
application designer, with some fixed functionality and other
reprogrammable parts known as shaders. The responsibilities
of each type of shader however are similar across applications
and GPUs - each type corresponding to a different stage of the
painter’s algorithm (e.g. the vertex shader projects triangles onto
the viewing plane, the fragment shader estimates the colour).
The shader programs are executed by sets of stream processors
- typically Single Instruction Multiple Data (SIMD) cores, with
the output of each stage feeding into the next. The final stage
writes to a frame buffer. GPUs can also have dedicated hardware
for operations such as depth culling or texture sampling [2].
The format of the data transported between stages is highly
homogenous, and each stage will execute the same small set
of operations on a large number of input tokens. This makes
SIMD cores a highly efficient way to accelerate the algorithm.
However, the requirement to build a frame from geometric
primitives places a lower bound on latency tied to frame rate
and geometry processing rate.

This presents a problem for those who require a rendering
algorithm with a different set of optimisations. In interactive
systems, low latency is important for a good user experience
and optimal performance, as demonstrated in a number of
studies (e.g. [4], [5], [6]). The typical way to conduct such

studies, is to measure participants’ performance at a primitive
interaction task, while controlling the latency. Participants
complete pointing and steering tasks using a specially designed
interface, while metrics about their performance (e.g. task
completion time) are measured under different conditions. This
requires an apparatus with very low tunable latency. Studies
continue to find the effects of latency at lower and lower levels,
and these are beginning to reach the limits of the hardware
typically used to conduct such tests.

For a recent experiment described in [7], we found ourselves
in need of a renderer with very low latency. The architecture
of traditional GPUs did not allow us to achieve the required
latency. Instead, we designed a new renderer based on dataflow
computing, and implemented it in reconfigurable hardware.
FPGAs have been used for real-time rendering before, but
with limited scope and tight vertical integration (e.g. [8],
[9]). The dataflow computing paradigm and tools such as
Maxeler’s MaxCompiler are making it possible to construct
image generators with entirely novel architectures, with similar
complexity of programming as traditional GPUs [10].

To minimise latency, the time between the computation of
any pixel and the latest input from the user must be minimised.
With full control of the rendering architecture enabled by the
use of reconfigurable hardware, we can ensure that the latency
is deterministic. This allows us to ‘race the beam’. Racing-the-
beam involves computing pixel values at the rate of the pixel
clock, with a latency much less than one frame period. The
result is pixel values are computed and then transmitted directly
to the display with minimal buffering, minimising the time
between user input and the corresponding change in the display.
The lower limit on latency is now due to the characteristics of
the display, including the response time of the display elements.

In this paper we describe our dataflow renderer in detail.
In Section II we review how reconfigurable hardware has
contributed to image synthesis. Section III describes the design
and operation of our renderer in detail. In Section IV we
discuss the performance of our apparatus and compare it to the
performance of the same apparatus, built with a GPU. Finally,
we present our conclusions in Section V. We hope this to be
the first step in building a high fidelity real-time renderer using
dataflow computing.

II. RELATED WORKS

The abilities of dedicated hardware make it popular for
a number of applications in computer graphics - including
the problem of reducing apparent latency. For example, a



warper-board was designed to deform images, making them
appear from a slightly different perspective than the one they
were rendered from [6]. The warper board could mitigate the
rendering delay, by updating the images with the latest tracking
data before they were presented to the user in a head mounted
display. This approach creates the illusion of low latency, but
risks introducing artefacts if there is not enough data to re-
compute the appearance of the image from the new viewpoint.

In addition to image processing, FPGAs have contributed to
novel image synthesis, by performing simple but high volume
computations. For example, Woop et al presented the design for
a hardware accelerated ray-tracer prototyped on an FPGA [11].
In 2013, Caustics Professional released a ray-tracing accelerator
card [12]. Yongsheng et al also describe a hardware ray-tracer,
but built with dataflow computing. Like Woop et al, theirs
performs both intersection tests and shading in hardware. They
note that dataflow computers are suitable for ray-tracing due
to the highly parallel nature of the algorithm [13].

Ten Hagen et al presented one of the first practical examples
of an image generator utilising dataflow computing in their
Dataflow Graphics Workstation [14]. The dataflow co-processor
in their system did not drive a display directly, but performed
pre-processing on 3D data, a function not dissimilar to modern
day vertex or geometry shaders. Voitsechov & Etsion present
an alternative architecture for GPGPUs based on dataflow
computing [15]. In their architecture instructions from CUDA
kernels are mapped to a dataflow graph. Their architecture
supports multiple concurrent threads, using input token buffers
at each node, which dynamically select which tokens to execute
at any time based on available input parameters from the
various tokens. This allows out-of-order execution at each
node, maximising usage of the entire graph when some nodes
(e.g. memory access nodes) have non-deterministic latencies.

FPGAs have also been applied to the specific problem of
low latency image synthesis. Regan et al constructed a very
low latency 3D light field renderer [8]. The architecture of
their renderer is similar to ours, and their goal was also to
design a renderer for investigating latency in human computer
interaction. They achieved a latency of only 200µs, though
the memory limitations of their platform permitted parallax in
only one dimension. The closest example to ours is that of
Ng et al [9], who built a low latency direct touch interaction
interface. They also designed theirs for latency interaction
experiments. In their apparatus, the touchscreen and projector
were connected directly to the FPGA, where the experiment
logic as well as the rendering algorithm were implemented.
The PC running the experiment was connected via USB and
was used to control the flow of the experiment. The apparatus
achieved an end-to-end latency of 1 ms.

III. DESIGN OF A LOW LATENCY RENDERER

We designed an experiment, documented in [7], in which
we asked participants to perform pointing and steering tasks.
To conduct this experiment we required a renderer that could
draw 2D images with a very low latency. Examples of these
are in Figure 1.

A. Architecture

We constructed such a renderer using a Maxeler Dataflow
Engine (DFE). This is a computing platform for executing

Fig. 1. Images of the stimuli the participants were exposed to.

Fig. 2. High level architecture of our dataflow renderer.

dataflow graphs described in Maxeler’s high level language
MaxJ. The architecture of our renderer is shown in Figure 2. The
renderer computes pixel values by combining a set of sprites
(2D images) of different sizes and locations. The DFE has two
types of memory, 48GB of DRAM (off-chip) and ∼5MB of
SRAM (on-chip). The smaller sprites are stored in SRAM and
the larger background maps in DRAM. The pixel colour values
are computed by the Rendering Kernel. The current location
on the display is tracked by row and column counters outside
the kernel. For each pixel the Rendering Kernel samples colour
values from the memories and combines them using a set of
functional blocks operating in parallel. The final colour values
are transferred to the Video Signal Generator, which generates
timing signals such as HSync, VSync and DE. The combined
colour and timing data is transferred to the video core, which
performs 8b/10b encoding, and then line level encoding and
output from the DFE using high speed transceivers. The output
is logically compliant DVI. A simple adapter board implements
the physical interconnect. By synthesising the DVI signals &
driving the display directly from the FPGA, we can ensure no
additional latency is introduced and minimise the complexity
of our apparatus.

Most functionality is implemented within the dataflow graph,
in kernels running at ∼200 MHz. The video signal generator
runs at 152 MHz, the pixel clock rate of the 144 Hz display.
MaxCompiler, Maxeler’s toolchain, handles the transfer of data
between kernels in different clock domains, as well as buffering
and backpressure signalling between them. By controlling the
size of the buffer between the Rendering Kernel and the Video
Signal Generator Kernel, we can control how many pixels are
rendered in advance. The buffer only has to be large enough to
account for pauses in the data stream due to non-deterministic
operations such as DRAM memory accesses. Pixel values are
computed continuously. The only communication from the
CPU is to update the algorithm parameters asynchronously.



The parameters include which background map to use, and the
location and content of the sprites.

B. Image Composition

The background map is sampled using burst reads into
multiple DRAM modules simultaneously, with the reads being
concatenated into a single 3072 bit word. Each word contains
pixels within a segment of a line. The aspect ratio of these
words are changed to form a stream of pixels. At the start
of each new line in the frame, commands to read the next
line in full are issued to memory. At the same time individual
pixels from the previous reads are read from the input buffer.
The commands to sample the first line of a frame are sent
during the synchronization period, when nothing is drawn. For
line widths that are not multiples of the memory width, the
remaining data is discarded during the synchronization period.

Sprites representing buttons and cursors were so small
they could be stored in SRAM, which supports fast random
access. The address to sample is computed based on the offset
into the sprite of the current pixel being computed. This is a
function of the sprites location. The location and content of the
sprites are updated via PCIe streams. If the offset is outside
the bounds of the sprite, the sample is set to transparent. In
most modules colours are represented as 32 bit RGBA allowing
alpha blending. The sprites are composited in a fixed order
obscuring or blending with the background map or those below
them based on their alpha component. The alpha channel is
discarded when the final colour samples are transmitted to the
Video Signal Generator.

C. Logical Display Interface

The colour and timing data is encoded into logically
compliant DVI in the Video Core. DVI is a fully digital protocol
which transmits 24 bit RGB data over three serial channels, with
a fourth transmitting the pixel clock. The 8 bit colour words are
converted to 10 bit words with a specialised version of 8b/10b
encoding, ensuring each channel remains DC balanced [16].
During the blanking periods of the frame, the RGB data is
substituted for control data, which includes the HSync and
VSync signals.

The Data Enable (DE) signal from the Video Signal
Generator determines whether the colour or control data (Hsync
& Vsync - also from the Video Signal Generator) should be
transmitted on a given clock cycle. The colour or control words
are routed to an 8b/10b encoder and then into the serialiser
of the high-speed transceivers on the FPGA of the DFE. The
words pass through a shallow FIFO buffer used to transfer
the words between the clock domains of the Video Signal
Generator and the transceiver Physical Media Access (PMA),
which run at the same rate but may be out of phase.

Maxeler’s toolchain does not currently support direct access
to the transceivers, however with Maxeler’s assistance a small
modification was made to the toolchain to give access to our
dataflow graph. The Physical Coding Sublayers (PCS) within
the transceiver blocks were configured to provide direct PMA
access to the transceivers. The serialiser is present within the
PMA of the transceivers, and was configured with a serialisation
factor of 10. The transceivers were bonded together and driven
by a single external serial clock, produced by a fractional-PLL

placed within the transceiver bank. A fourth transceiver was
used to transmit the pixel clock. To do this a constant pattern of
0x1Fh was written to the parallel data port. The driver output
stage is shown in Figure 3.

Fig. 3. Diagram of the data transfer and clocking of our DVI driver output
stage, and at what level each component exists.

D. Physical Display Interface

The transceivers on the DFE use PCML (Pseudo Current
Mode Logic) and are AC coupled. DVI specifies DC coupled
CML, with the common-mode voltage set by the receiver. To
make the output DVI compliant, a board was constructed which
routed the serial data through a TI DS34RT5110. This is an
HDMI re-timer IC which implements TMDS outputs. The board
attaches to proprietary gold finger connectors on the DFE, and
presents a standard DVI female connector. It’s design and layout
was based on the reference provided by Texas Instruments [17].

IV. EXPERIMENTAL RESULTS

We measured the end-to-end latency of our apparatus at
∼6 ms, using the cross-correlation variant of Steed’s Method
[18]. This was predominantly the scan out time of the display.
In addition, we connected LEDs to a specially designed output
of the DFE, and the parallel port of the host PC. On receipt of a
specific input the CPU application would signal the parallel port
and the DFE to illuminate these. High speed video (1000 fps)
monitored the input devices and the LEDs. High speed video
was used rather than an oscilloscope because it could monitor
the input device and scan-out in addition to the LEDs, without
additional instrumentation. The delay between each stage was
determined by counting the number of frames between the
occurrence of each event. The high speed video showed the
first LED activating within ∼1 ms of the input device being
triggered. The delay between the first and second LED was so
low it could not be discerned from the video. This is summarised
in Figure 4.

Fig. 4. Total observed delay of each stage of our apparatus.



A. Comparison with GPU

We rebuilt our apparatus with a GPU (an NVidia Quadro
NVS 290) in place of the dataflow renderer in order to measure
the latency a traditional GPU would provide. The system
remained otherwise unchanged. A small program was written
which drew three textured squares, one controlled by the mouse.
The program used the GLUT toolkit to draw quad primitives
specified directly in normalised device coordinates. The latency
was measured under two conditions using the cross-correlation
variant of Steed’s Method. The results are shown in Table I.
We used a swap chain of length 2. With no swap chain visual
artefacts were so severe measurements could not be taken. We
judged that the visual artefacts present with no VSync would
not be too disruptive to run the experiment, therefore the best
case for the GPU had a latency 3x higher than our renderer.

TABLE I. AVERAGE AND STANDARD DEVIATION OF THE LATENCY OF
OUR STIMULI WHEN RENDERED WITH A GPU

Condition Average (ms) Std. Dev.
(ms)

Sample Size

VSync On 26.17 2.79 6
VSync Off 19.86 4.16 7

V. CONCLUSION

Reconfigurable hardware has been used before for low
latency image synthesis. These are typically low level im-
plementations with tight vertical integration. For example the
apparatus of both Regan et al and Ng et al had the tracker driven
by the same device performing the rendering. Reconfigurable
hardware combined with the dataflow programming model can
make application specific rendering hardware cost effective. Our
sprite renderer has comparable scope to both prior examples,
but our dataflow graph can be adapted to other use cases with
an effort comparable to GPU shader programming.

Dataflow computers are an ideal platform to create new
renderers without the limits of the painter’s algorithm. Our
renderer avoided the buffering inherent in that algorithm, and
ran asynchronously of the CPU. It’s architecture allowed us to
race the beam, minimising the delay between user input and
what is being drawn to the screen. For the renderer itself, this
was less than 1 ms.

Our implementation currently requires a modified toolchain
to drive the display. An alternative would be to use a standard
platform interface such as Ethernet to route display data to
another device. So long as the chosen protocol included back-
pressure functionality the design would remain conceptually the
same, but with the Video Core and display driver implemented
externally. The design would be more complex however, with
far more buffering and therefore higher latency.

We are currently extending our design to render more
complex 3D environments by building a ray-caster environment
map renderer. In this renderer, a cube surrounds the user’s
viewpoint. For each pixel on the user’s viewplane, a ray is
cast and a texture map sampled based on the intersection point.
Like our 2D renderer, it will be able to update the viewpoint
while drawing the frame. An environment map will offer a
convincing view of a 3D environment. The renderer will allow
further user studies to be performed in immersive virtual reality.

REFERENCES

[1] M. Zwicker, M. Gross, and H. Pfister, “A Survey and Classification
of Real Time Rendering Methods,” Mitsubishi Research Laboratories,
Tech. Rep., 2000.

[2] J. F. Hughes, A. van Dam, M. McGuire, D. F. Sklar, J. D. Foley, S. K.
Feiner, and K. Akeley, Computer Graphics Principles and Practice,
3rd ed. Addison-Wesley, 2013.

[3] J. D. Owens, “Computer Graphics on a Stream Architecture,” Ph.D.
dissertation, Stanford University, 2002.

[4] I. S. MacKenzie and C. Ware, “Lag as a determinant of
human performance in interactive systems,” in Proceedings of
the SIGCHI conference on Human factors in computing systems.
New York: ACM Press, 1993, pp. 488–493. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=169059.169431

[5] M. Slater, B. Lotto, M. M. Arnold, and M. V. Sanchez-Vives, “How we
experience immersive virtual environments: the concept of presence and
its measurement,” Anuario de Psicologı́a, vol. 40, no. 2, pp. 193–210,
2009.

[6] D. a. Vincenzi, J. E. Deaton, T. J. Buker, E. L. Blickensderfer,
R. Pray, and B. Williams, “Mitigation of System Latency in
Next Generation Helmet Mounted Display Systems,” in Proceedings
of the Human Factors and Ergonomics Society Annual Meeting,
vol. 55, no. 1, Sep. 2011, pp. 2163–2167. [Online]. Available:
http://pro.sagepub.com/lookup/doi/10.1177/1071181311551451

[7] S. Friston, P. Karlström, and A. Steed, “The Effects of Low Latency on
Pointing and Steering Tasks,” Submitted 2014, 2014.

[8] M. J. P. Regan, G. S. P. Miller, S. M. Rubin, and C. Kogelnik, “A
real-time low-latency hardware light-field renderer,” in Proceedings
of the 26th annual conference on Computer graphics and interactive
techniques - SIGGRAPH ’99, 1999, pp. 287–290. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=311535.311569

[9] A. Ng, J. Lepinski, D. Wigdor, S. Sanders, and P. Dietz,
“Designing for low-latency direct-touch input,” Proceedings of
the 25th annual ACM symposium on User interface software
and technology - UIST ’12, p. 453, 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2380116.2380174

[10] O. Pell and V. Averbukh, “Maximum Performance Computing
with Dataflow Engines,” Computing in Science & Engineering,
vol. 14, no. 4, pp. 98–103, Jul. 2012. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-1-4614-1791-0 25

[11] S. Woop, J. Schmittler, and P. Slusallek, “RPU: a programmable
ray processing unit for realtime ray tracing,” ACM Transactions on
Graphics, vol. 1, no. 212, pp. 434–444, 2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1073211

[12] J. Hruska, “The future of ray tracing, reviewed: Caustic’s r2500
accelerator finally moves us towards real-time ray tracing,”
http://www.extremetech.com/extreme/161074-the-future-of-ray-
tracing-reviewed-caustics-r2500-accelerator-finally-moves-us-towards-
real-time-ray-tracing, 2013.

[13] L. Yongsheng, S. L. Chen, Z. Wenhao, L. Xiaojun, X. Tao,
Z. Limin, Y. Shiming, and C. Jingfeng, “The design methodology
of a High-Performance dataflow supercomputer on a reconfigurable
chipset for use in 3D graphics applications,” in 2014 12th
IEEE International Conference on Solid-State and Integrated
Circuit Technology (ICSICT), 2014, pp. 1–3. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7021400

[14] P. Ten Hagen, I. Herman, and J. R. G. De Vries, “A dataflow graphics
workstation,” Computers & Graphics, vol. 14, no. 1, pp. 83–93, 1990.

[15] D. Voitsechov and Y. Etsion, “Single-graph multiple flows: Energy
efficient design alternative for GPGPUs,” Proceedings - International
Symposium on Computer Architecture, pp. 205–216, 2014.

[16] Digital Display Working Group, “Digital Visual Interface Specification,”
no. April, 1999.

[17] Texas Instruments, DS34RT5110-EVKH HDMI Extender Demo Kit for
HDMI Cables User’s Guide, 2013, no. SNLU033A.

[18] S. Friston and A. Steed, “Measuring Latency in Virtual Environments,”
IEEE Transactions on Visualization and Computer Graphics (Proceed-
ings Virtual Reality 2014), vol. 20, no. 4, 2014.


